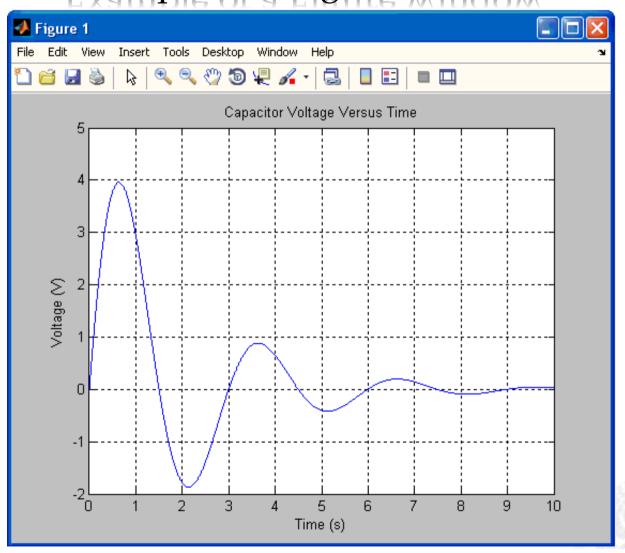
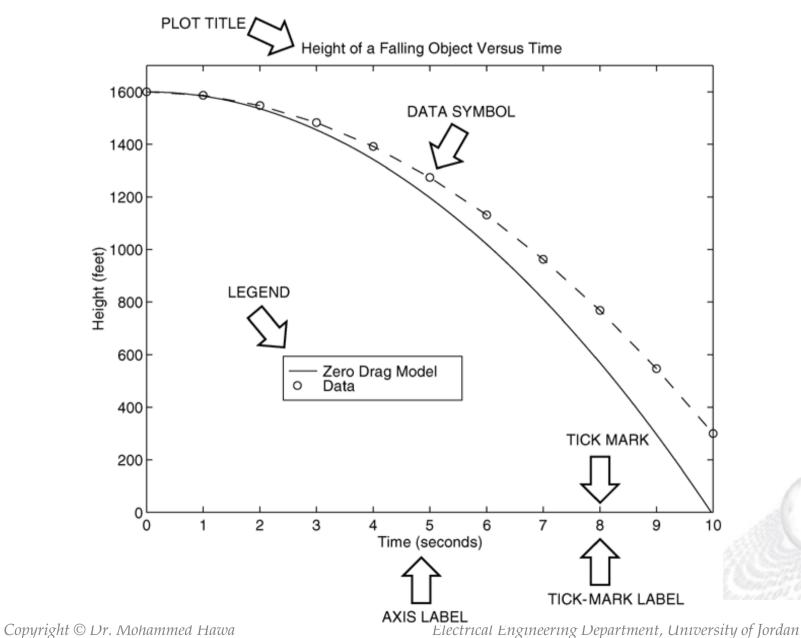
# Lecture 6: Plotting in MATLAB


Dr. Mohammed Hawa Electrical Engineering Department University of Jordan

EE201: Computer Applications. See Textbook Chapter 5.

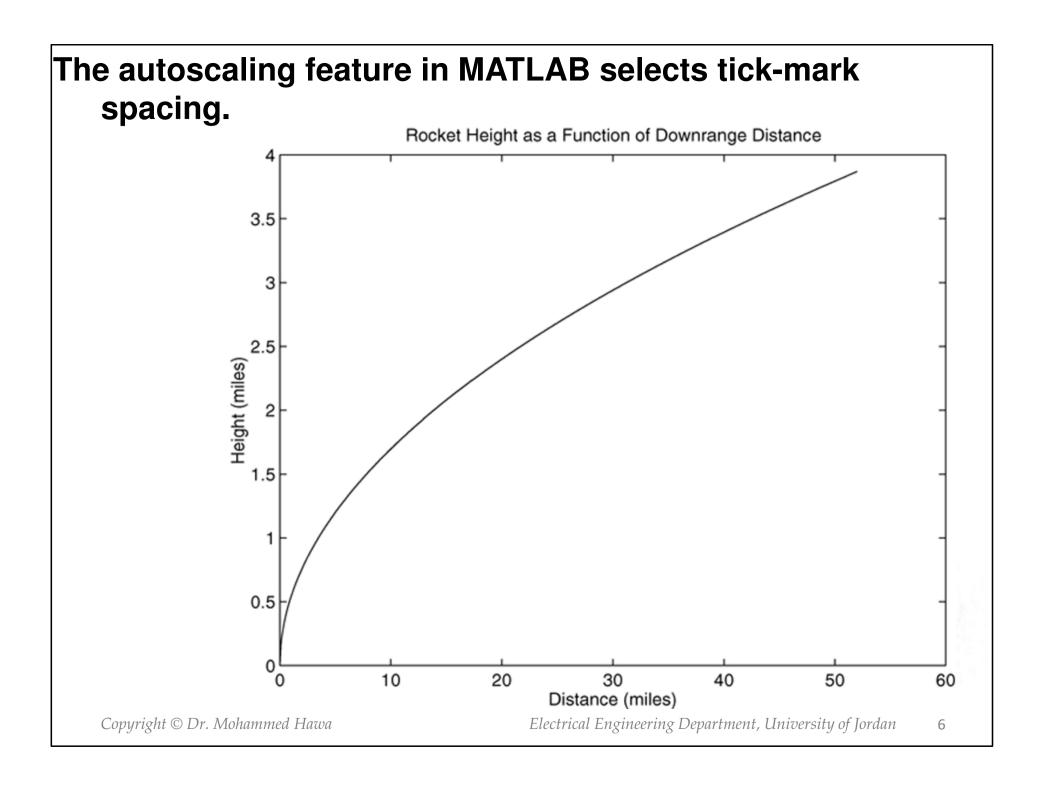

## A picture is worth a thousand words

- MATLAB allows you to plot data sets for better visualization and interpretation.
- There are different types of plots available in MATLAB (*see next*) including 2D and 3D plots.
- You can control all aspects of the plot: lines, colors, grids, labels, etc.
- Plotting clear and easy-to-read figures is an important skill, which you gain from experience.
- For pointers, read in your textbook the *Requirements for a Correct Plot* (Table 5.1-1, page 221), and *Hints for Improving Plots* (Table 5.1-3, page 226).

## Example of a Figure window








**Example:** Plot  $y = 0.4 \times \sqrt{1.8x}$  for  $0 \le x \le 52$ , where y represents the height of a rocket after launch, in miles, and x is the horizontal (downrange) distance in miles.

```
>> x = 0:0.1:52;
>> y = 0.4*sqrt(1.8*x);
>> plot(x,y);
>> xlabel('Distance (miles)');
>> ylabel('Height (miles)');
>> title('Rocket Height vs. Distance');
```

Notice that for each x there is y; so MATLAB plots one array against another.

Also notice how we added the axes labels and plot title. The resulting plot is shown on the next slide.



The plot will appear in the Figure window. You can use the plot in other applications in several ways:

- 1. You can print a hard copy of the figure by selecting **File | Print** menu item in the Figure window.
- 2. You can save the plot to a file to be used later. You can save the plot by selecting **File | Save As** menu item. Possible file formats include: \*.fig (MATLAB format), \*.bmp, \*.eps, \*.jpg, \*.png, \*.tif, \*.pdf, .... Another way to save is **File | Export Setup** that allows specifying options for the output file, then selecting **Export**.
- 3. You can copy a figure to the clipboard and then paste it into another application using the **Edit | Copy Figure** menu item. For options, use **Edit | Copying Options** menu item.

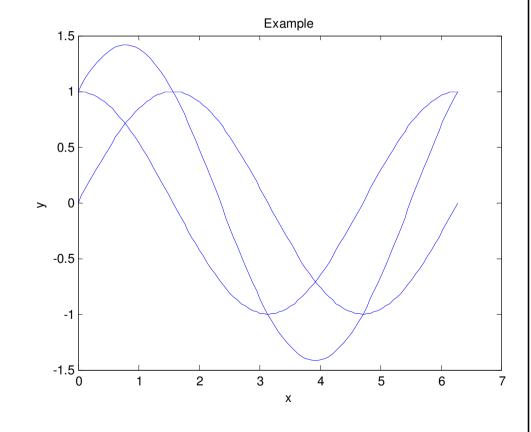
When you have finished with the plot, close the figure window by selecting **File | Close** menu item in the figure window.

If you do not close the window, it will not re-appear when a new plot command is executed. However, the figure will still be updated.



# One Data Set: plot

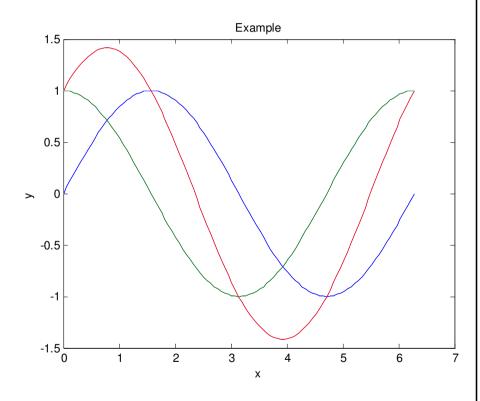
```
x = 0:2*pi/100:2*pi;
y1 = sin(x);
plot(x, y1);
                                       Example
                          0.8
xlabel('x');
                          0.6
ylabel('y');
                          0.4
title('Example');
                          -0.2
plot (y1): Plots values
of y1 versus their indices of 10.6
if y1 is a vector.
                                       3
                                        Χ
```


Electrical Engineering Department, University of Jordan

9

Copyright © Dr. Mohammed Hawa

# Multiple Data Sets: plot, hold


```
x = 0:2*pi/100:2*pi;
  y1 = \sin(x);
  y2 = cos(x);
  y3 = \sin(x) + \cos(x);
  plot(x, y1);
  hold on;
  plot(x, y2);
  plot(x, y3);
 xlabel('x');
ylabel('y');
title('Example');
  hold off;
```

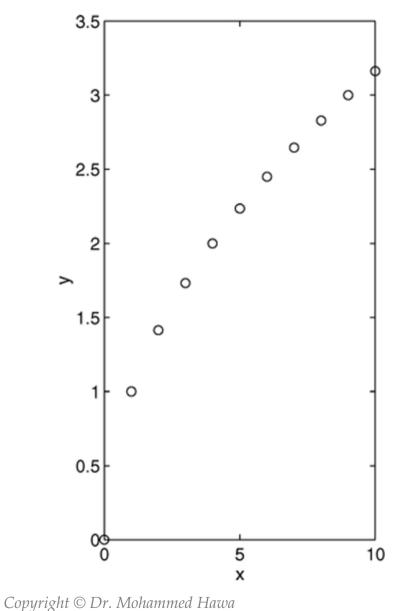


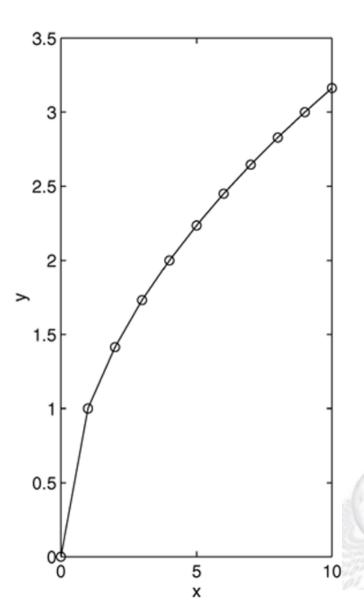
## Or better use one plot command

```
x = 0:2*pi/100:2*pi;
y1 = sin(x);
y2 = cos(x);
y3 = sin(x)+cos(x);
plot(x,y1,x,y2,x,y3);
xlabel('x');
ylabel('y');
title('Example');
```

% Notice the auto coloring % by MATLAB




## Colors, Data Markers & Line Types

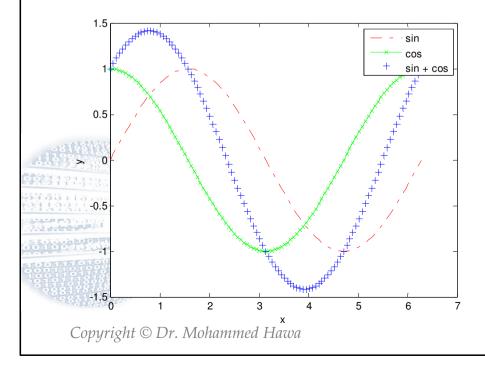

- You can also specify your own line styles in the plot command.
- For full details enter help plot in MATLAB.

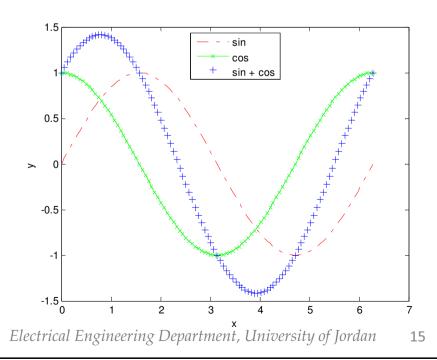
```
b
      blue
                          point
                                                    solid
                                                    dotted
                          circle
      green
                          x-mark
                                                    dashdot
      red
                                                    dashed
                          plus
      cyan
                                                    no line
                                            (none)
      magenta
                          star
     vellow
                          square
                    3
      black
                          diamond
      white
                          triangle (down)
                          triangle (up)
                          triangle (left)
                    <
                          triangle (right)
                          pentagram
                    p
                          hexagram
```

```
x = 0:2*pi/100:2*pi;
y1 = \sin(x);
y2 = cos(x);
y3 = \sin(x) + \cos(x);
plot(x,y1,'r-.',x,y2,'g-x',x,y3,'b+');
xlabel('x');
ylabel('y');
                              0.5
                              -0.5
                             -1.5 L
0
                                             3
Copyright © Dr. Mohammed Hawa
                                Electrical Engineering Department, University of Jordan
                                                              13
```







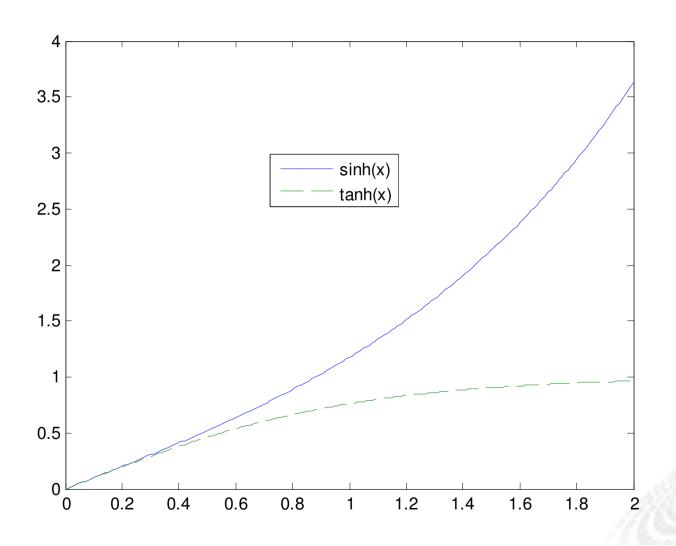


# Legends

• With multiple lines on the same plot it is a good idea to add a legend.

```
legend('sin','cos','sin + cos');
legend('sin','cos','sin+cos','Location','North');
```

You can also move the legend with the mouse.






#### **Labeling Curves and Data**

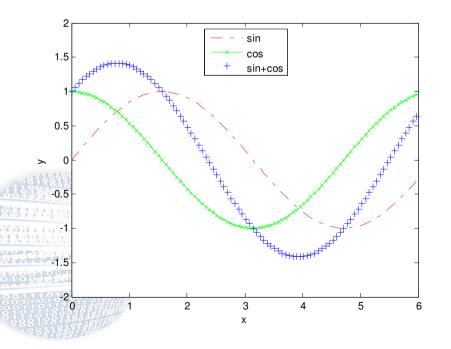
The legend command automatically obtains from the plot the line type used for each data set and displays a sample of this line type in the legend box next to the string you selected. The following script file produced the plot in the next slide.

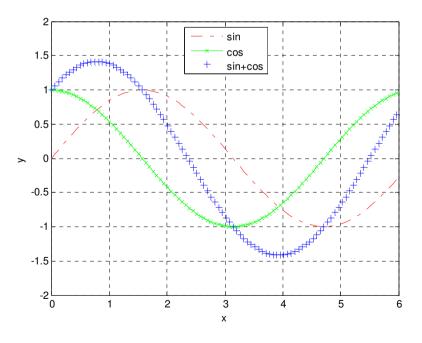
```
x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,'--');
legend('sinh(x)', 'tanh(x)');
gtext('text'): Places a string in the Figure
window at a point specified by the mouse.
text(x,y,'text'): Places a string in the Figure
window at a point specified by coordinates x, y.
```

# Application of the legend command. I moved the legend to an empty space using the mouse.



#### The grid and axis Commands


MATLAB will automatically determine the maximum and minimum values for the axes. You can use the axis command to override the MATLAB selections for the axis limits. The syntax is axis ([xmin xmax ymin ymax]). This command sets the scaling for the x- and y-axes to the minimum and maximum values indicated.


The grid command displays gridlines at the tick marks corresponding to the tick labels. Type grid on to add gridlines; type grid off to stop plotting gridlines. When used by itself, grid toggles this feature on or off, but you might want to use grid on and grid off to be sure.

# axis and grid commands

```
axis([0 9 -2 2]); grid on;
axis([0 6 -2 2]);
```

grid off;





Copyright © Dr. Mohammed Hawa

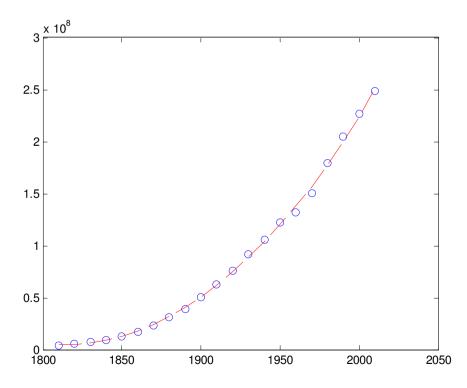
Electrical Engineering Department, University of Jordan

#### Homework #1 Plotting Polynomials with the polyval Function.

To plot the polynomial  $3x^5 + 2x^4 - 100x^3 + 2x^2 - 7x + 90$  over the range  $-6 \le x \le 6$  with a spacing of 0.01, you type

```
>> x = -6:0.01:6;
>> p = [3, 2, -100, 2, -7, 90];
>> plot(x,polyval(p,x));
>> xlabel('x');
                                         3000
>> ylabel('p');
                                         2000
                                        a 1000
                                         -1000
Copyright © Dr. Mohammed Hawa
                                   Electrical Engineering Department, University of Jordan
```

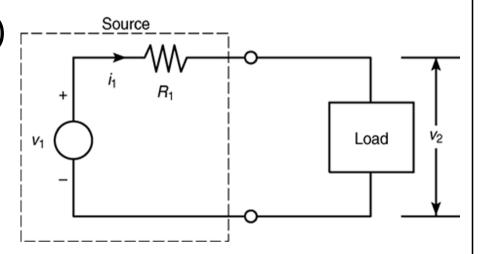
20


# Homework #2

- The polyfit function is based on the least-squares method. It fits a polynomial of degree n to data described by the vectors x and y, where x is the independent variable.
- Syntax: p = polyfit(x, y, n)
- It returns a row vector p of length n+1 that contains the polynomial coefficients in order of descending powers.
- For the following census data, draw the actual points and the best 5<sup>th</sup> order polynomial fit for such data.

```
year = 1810:10:2010;
population = 1e6*[3.9 5.3 7.2 9.6 12.9 17.1
23.1 31.4 38.6 50.2 62.9 76. 92. 105.7 122.8
131.7 150.7 179. 205. 226.5 248.7];
coeff = polyfit(year, population, 5)
f = polyval(coeff, year);
plot(year, population, 'bo', year, f, 'r--');
```




Copyright © Dr. Mohammed Hawa



Electrical Engineering Department, University of Jordan

## Homework #3 Graphical solution of an Electrical System

- Load is governed by:
- $i1 = 0.16 (e^{0.12v_2} 1)$
- What is the equation for the practical source? Assume:
- $R1 = 30\Omega, v_1 = 15V$
- Find the correct value for v2 between 0 and 20V, and also  $i_1$  value





# Solution

• The equation for the power supply is:

$$v_2 = v_1 - Ri_1$$
$$i_1 = \frac{15 - v_2}{22}$$

 If we draw both equations we can see the solution point (the one that satisfies both equations).

```
v2 = [0:0.1:20];
i_load = ...
0.16*(\exp(0.12*v2) - 1);
i source = (15-v2)/30;
plot(v2, i_load, 'r', ...
v2, i_source, 'b');
1.6
0.4
0.2
            Voltage (V)
```

Electrical Engineering Department, University of Jordan

# More Than One Figure Window

What happens if you enter the following?

```
x = 0:2*pi/100:2*pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1);
title('Plot #1');
plot(x,y2);
title('Plot #2');
```

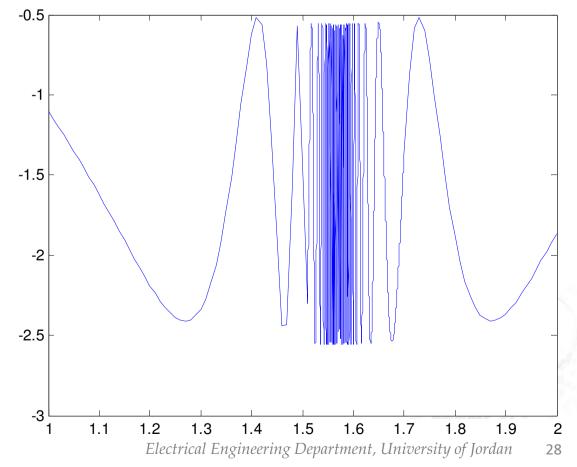


# More Than One Figure Window

- ... you end up with one figure window and it contains a plot of y = cos(x).
- To open a new figure window enter the command figure before making the second plot.

```
plot(x,y1);
title('Plot #1');
figure;
plot(x,y2);
title('Plot #2');
```

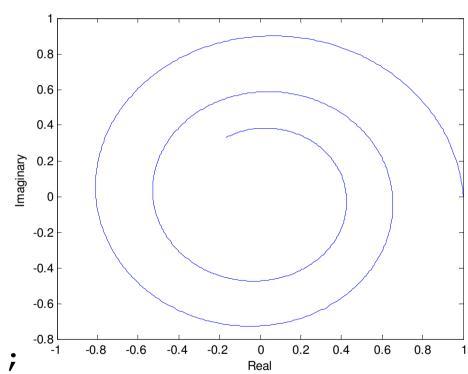



### The fplot command is a "smart" plotting function. Example: $f = Q(x) (\cos(\tan(x)) - \tan(\sin(x)));$ fplot(f,[1 2]); -0.5 -1.5 -2 -2.5 1.2 1.3 1.5 1.1 1.4 1.6 1.7 1.8 1.9 Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

The plot command is more common than the fplot command because it gives more control. Also when you type fplot you see it actually uses plot.

```
f = @(x) (cos(tan(x)) - tan(sin(x)));

t=[1:0.01:1.5, 1.51:0.0001:1.7, 1.71:0.01:2];


plot(t, f(t));
```



5-13<sup>Copyright ©</sup> Dr. Mohammed Hawa

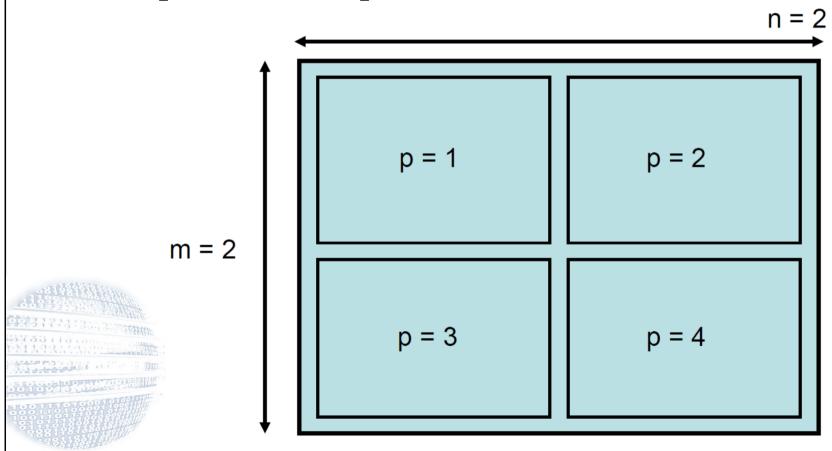
## Complex Plot: Real vs. Imaginary

```
n = [0:0.01:10];
y = (0.1+0.9j).^n;
plot(y);
xlabel('Real');
ylabel('Imaginary');
```



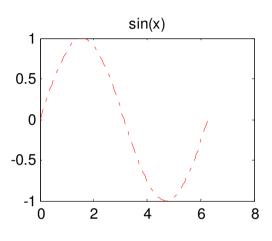
#### • Similar to:

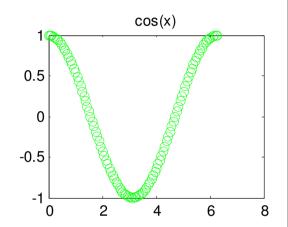
plot(real(y), imag(y));

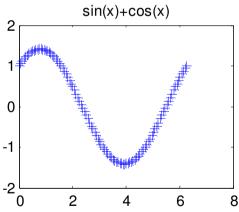

#### **Subplots**

You can use the subplot command to obtain several smaller "subplots" in the same figure. The syntax is subplot(m,n,p). This command divides the Figure window into an array of rectangular panes with m rows and n columns. The variable p tells MATLAB to place the output of the plot command following the subplot command into the pth pane.

For example, subplot (3, 2, 5) creates an array of six panes, three panes deep and two panes across, and directs the next plot to appear in the fifth pane (in the bottom-left corner).


# Subplots


subplot(m,n,p)




# Example

```
x = 0:2*pi/100:2*pi;
 y1 = \sin(x);
 y2 = cos(x);
 y3 = \sin(x) + \cos(x);
 subplot(2,2,1);
 plot(x,y1,'r-.');
 title('sin(x)');
 subplot (2,2,2);
 plot(x, y2, 'go');
 title('cos(x)');
 subplot(2,2,3);
plot(x,y3,'b+');
 title('\sin(x) + \cos(x)');
```







#### Homework:

The following script file shows two plots of the functions  $y = e^{-1.2x} \sin(10x + 5)$  for  $0 \le x \le 5$  and  $y = |x^3 - 100|$  for  $-6 \le x \le 6$ .

```
x = 0:0.01:5;

y = \exp(-1.2*x).*\sin(10*x+5);

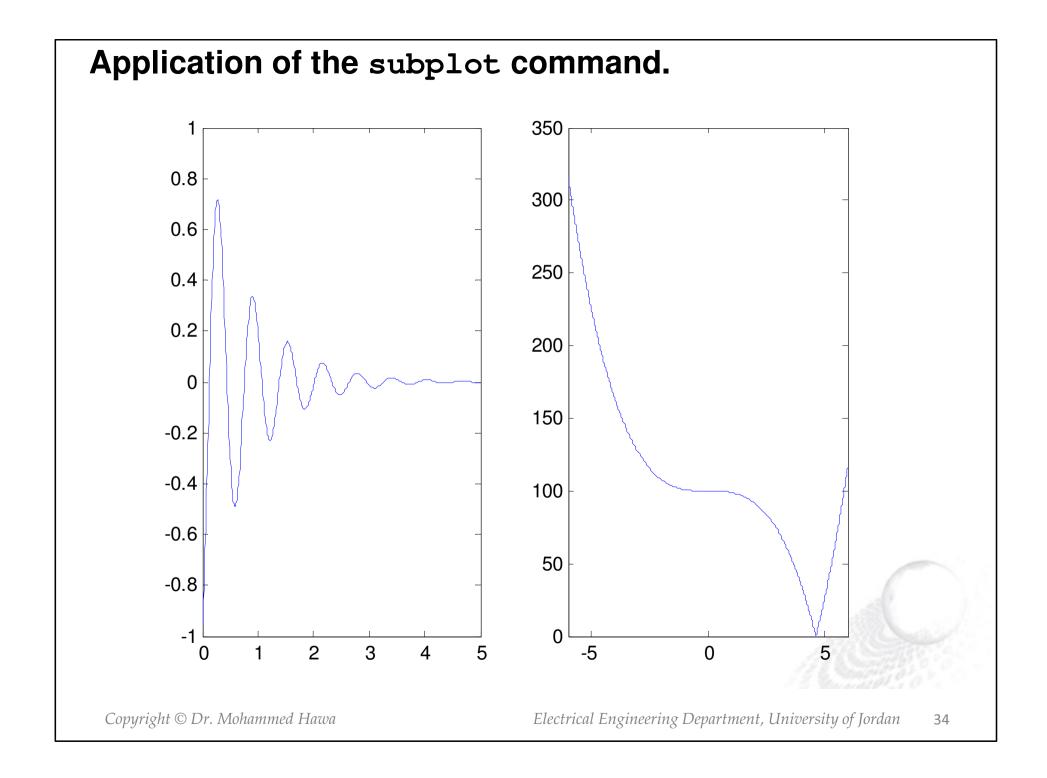
subplot(1,2,1);

plot(x,y);

axis([0 5 -1 1]);

x = -6:0.01:6;

y = abs(x.^3-100);


subplot(1,2,2);

plot(x,y);

axis([-6 6 0 350])

The final equation of the content o
```

The figure is shown on the next slide.



# Log-scale Plots

- Why use log scales? Linear scales cannot properly display wide variations in data values.
- MATLAB has three commands. The appropriate command depends on which axis you want to be a log scale.
- loglog(x,y): both scales logarithmic.
- semilogx(x,y): x-axis is logarithmic and y-axis is rectilinear.
- semilogy(x,y): y-axis is logarithmic and x-axis is rectilinear.
- The syntax is similar to the plot command.

$$y = \sqrt{\frac{100(1 - 0.01x^2)^2 + 0.02x^2}{(1 - x^2)^2 + 0.1x^2}} \qquad 0.1 \le x \le 100$$

```
x = [0.1:0.01:100];
y = sqrt((100*(1-0.01*x.^2).^2...
+0.02*x.^2) ...
./((1-x.^2).^2+0.1*x.^2));
plot(x, y);
                        30
                        20
                        15
                        10
                            10
                                20
                                   30
                                       40
                                          50
                                              60
                                                 70
                                                     80
                                                            100
Copyright © Dr. Mohammed Hawa
                               Electrical Engineering Department, University of Jordan
                                                            36
```

```
x = [0.1:0.01:100];
y = sqrt((100*(1-0.01*x.^2).^2...
+0.02*x.^2) ...
./((1-x.^2).^2+0.1*x.^2));
loglog(x, y);
                               10
                               10<sup>0</sup>
                               10<sup>-1</sup>
                                            10<sup>-1</sup>
                                                        10<sup>0</sup>
                                10<sup>-2</sup>
                                                                   10<sup>1</sup>
                                                                               10<sup>2</sup>
Copyright © Dr. Mohammed Hawa
                                         Electrical Engineering Department, University of Jordan
                                                                               37
```

#### **Logarithmic Plots**

It is important to remember the following points when using log scales:

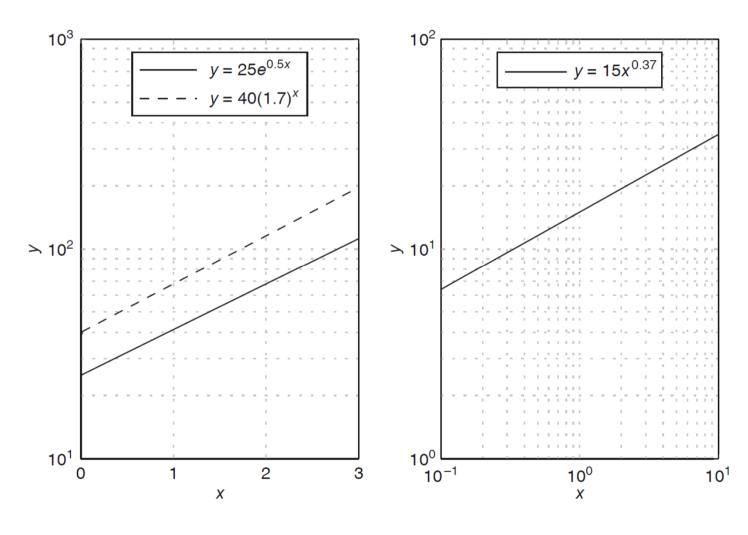
- 1. You cannot plot negative numbers on a log scale, because the logarithm of a negative number is not defined as a real number.
- **2.** You cannot plot the number 0 on a log scale, because  $\log_{10} 0 = \ln 0 = -\infty$ . You must choose an appropriately small number as the lower limit on the plot.

(continued...)

### **Logarithmic Plots (continued)**

- **3.** The tick-mark labels on a log scale are the actual values being plotted; they are not the logarithms of the numbers. For example, the range of x values in the plot in the above Figure is from  $10^{-2} = 0.01$  to  $10^2 = 100$ .
- **4.** Gridlines and tick marks within a decade are unevenly spaced. If 8 gridlines or tick marks occur within the decade, they correspond to values equal to 2, 3, 4, . . . , 8, 9 times the value represented by the first gridline or tick mark of the decade.

(continued...)


#### **Logarithmic Plots (continued)**

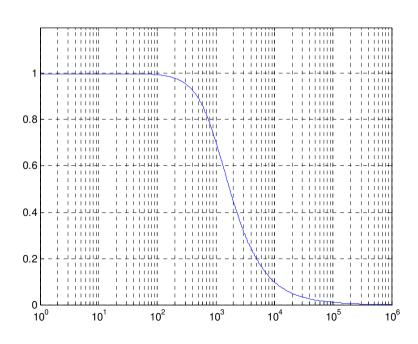
5. Equal distances on a log scale correspond to multiplication by the same constant (as opposed to addition of the same constant on a rectilinear scale).

For example, all numbers that differ by a factor of 10 are separated by the same distance on a log scale. That is, the distance between 0.3 and 3 is the same as the distance between 30 and 300. This separation is referred to as a *decade* or *cycle*.

The plot shown in the above Figure covers four decades in x (from 0.01 to 100) and four decades in y.

# Homework: reproduce the following plots. What commands did you use?




## Homework

 For the first-order RC circuit, which acts as a LPF, the output to input ratio is:

• 
$$|H(\omega)| = \frac{|V_o(\omega)|}{|V_i(\omega)|} = \frac{1}{1+j\omega RC}$$

• Sketch this frequency response function using semilogx. Assume:  $R = 1k\Omega$ ,  $C = 1\mu F$ 

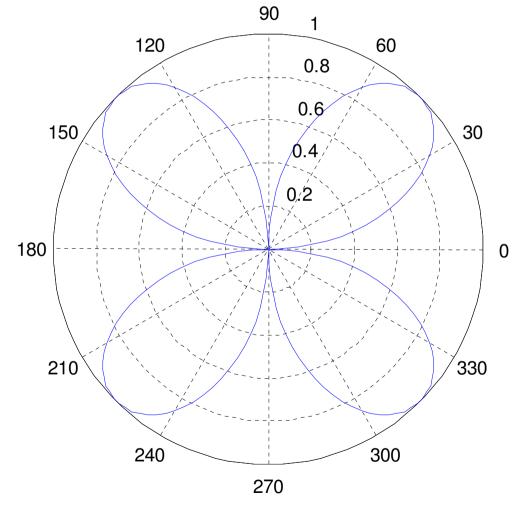
$$v_i(t)$$
 $v_i(t)$ 
 $v_i(t)$ 



# Solution

```
omega = 0:1:1e6;
h = abs(1./(1+i*omega*1e3*1e-6));
semilogx(omega, h);
axis([0 1e6 0 1.2]);
grid on;
```

Q. What is the bandwidth of this LPF?

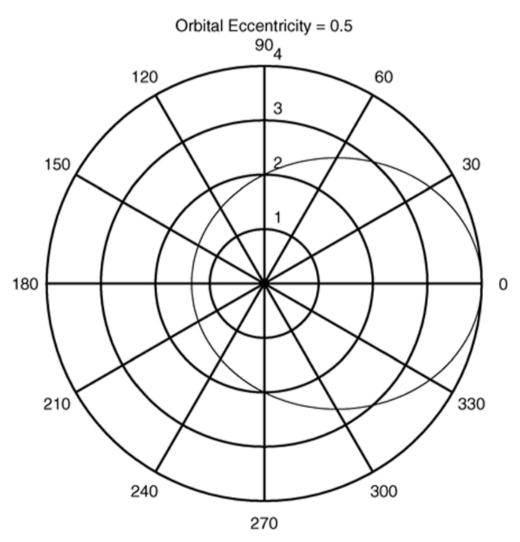



### Specialized plot commands.

| Command               | Description                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| bar(x,y)              | Creates a bar chart of $y$ versus $x$ .                                                                                                     |
| plotyy(x1,y1,x2,y2)   | Produces a plot with two $\emph{y}$ -axes, $y1$ on the left and $y2$ on the right.                                                          |
| polar(theta,r,'type') | Produces a polar plot from the polar coordinates theta and $r$ , using the line type, data marker, and colors specified in the string type. |
| stairs(x,y)           | Produces a stairs plot of $y$ versus $x$ .                                                                                                  |
| stem(x,y)             | Produces a stem plot of $y$ versus $x$ .                                                                                                    |
|                       |                                                                                                                                             |

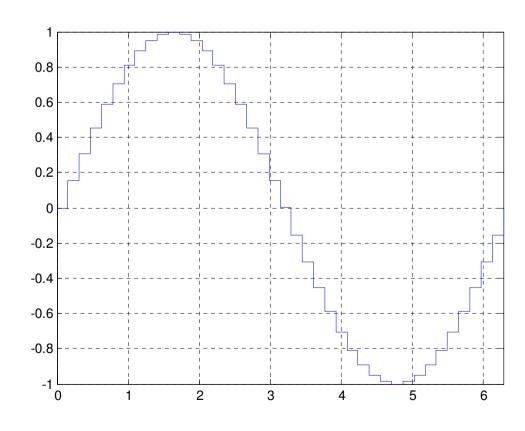
```
x = [0:pi/20:pi];
bar(x, sin(x));
                    0.9
                    8.0
                    0.7
                    0.6
                    0.5
                    0.4
                    0.3
                    0.2
                    0.1
                      0 └
-0.5
                                     0.5
                                                    1.5
                                                                    2.5
                                                                                   3.5
                              0
Copyright © Dr. Mohammed Hawa
                                             Electrical Engineering Department, University of Jordan
                                                                                      45
```

```
theta = [0:pi/90:2*pi];
polar(theta , sin(2*theta));
grid;
```






Copyright © Dr. Mohammed Hawa

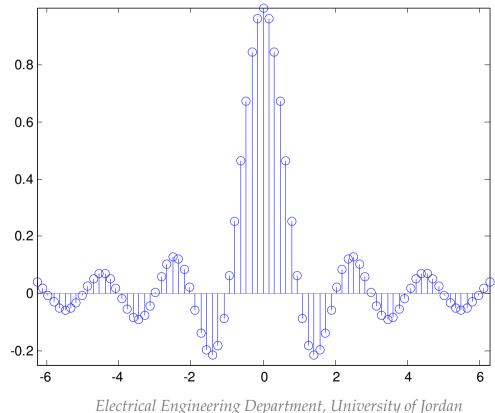

Electrical Engineering Department, University of Jordan

# Homework: Reproduce the following plot for an orbit with an eccentricity of 0.5.



$$r = \frac{2}{1 - 0.5\cos(\theta)}$$

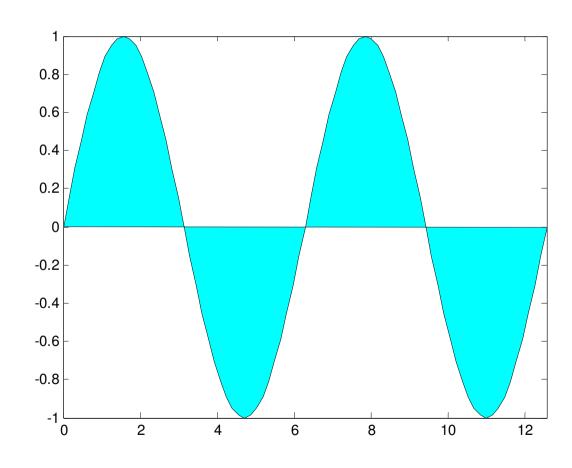
```
x = [0:pi/20:2*pi];
stairs(x,sin(x));
grid;
axis([0 2*pi -1 1]);
```






Copyright © Dr. Mohammed Hawa

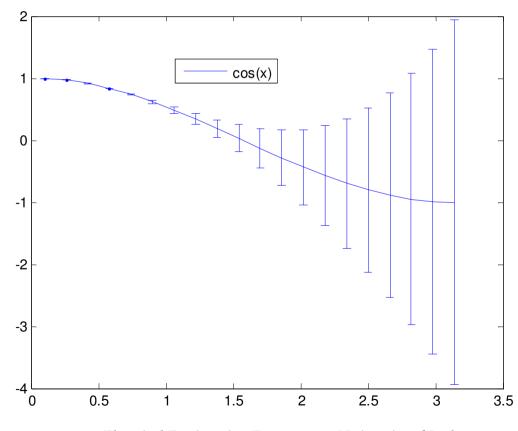
Electrical Engineering Department, University of Jordan


```
x = [-2*pi:pi/20:2*pi];
x = x + (~x)*eps;
y = sin(pi*x)./(pi*x);
stem(x,y);
axis([-2*pi 2*pi -.25 1]);
```





Copyright © Dr. Mohammed Hawa


```
x = [-2*pi:pi/20:4*pi];
fill(x,sin(x),'c');
axis([0 4*pi -1 1]);
```



Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

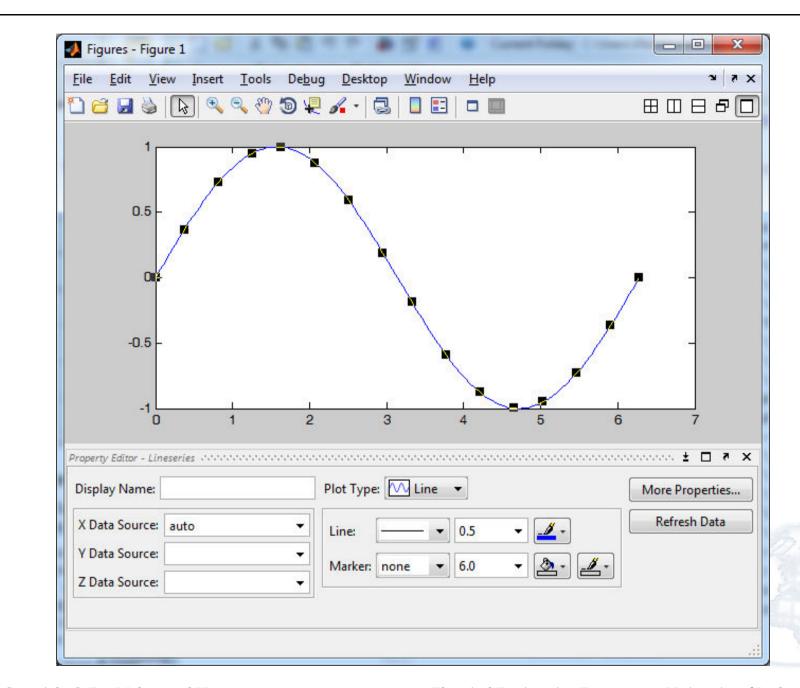
```
x = linspace(0.1, pi, 20);
approx = 1 - x.^2/2;
error = approx - cos(x);
errorbar(x, cos(x), error);
legend('cos(x)');
```





Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

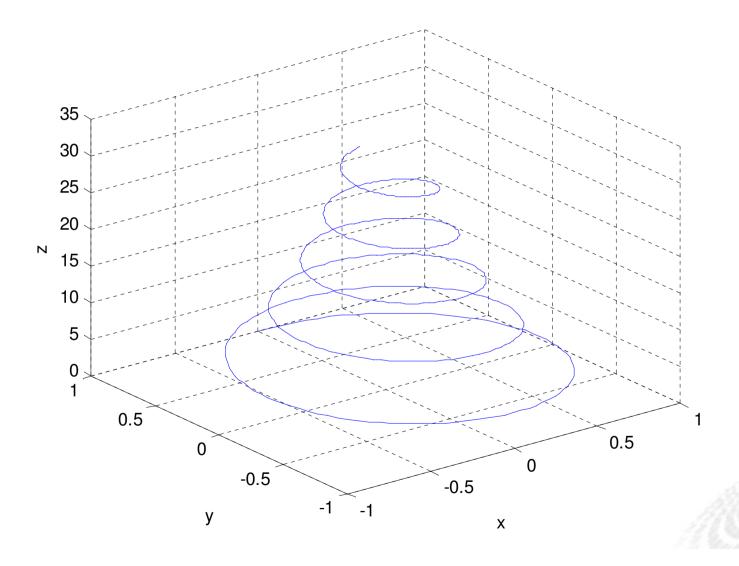

#### **Interactive Editing of Plots in MATLAB**

This interface can be advantageous in situations where:

- You want to add annotations such as lines, arrows, text, rectangles, and ellipses.
- You want to change plot characteristics such as tick spacing, fonts, bolding, colors, line weight, etc.

Select the Arrow (or **Tools | Edit Plot** from the menu) then double click on the portion you want to edit.





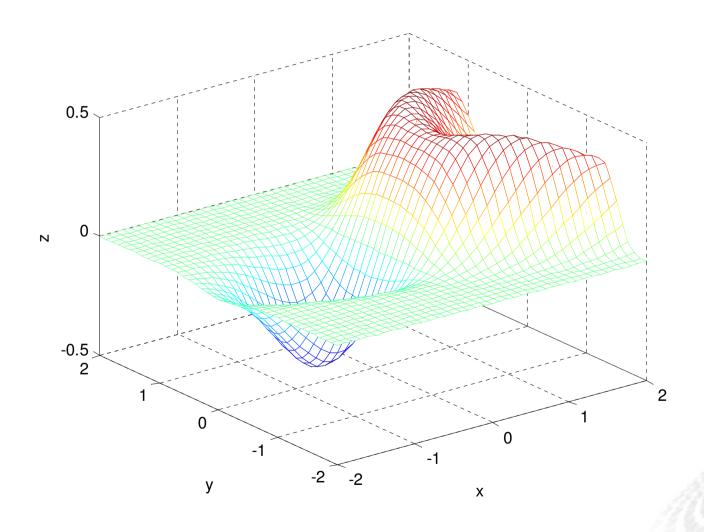

### Three-Dimensional Line Plots

The following program uses the plot3 function to generate the spiral curve shown in the next slide.

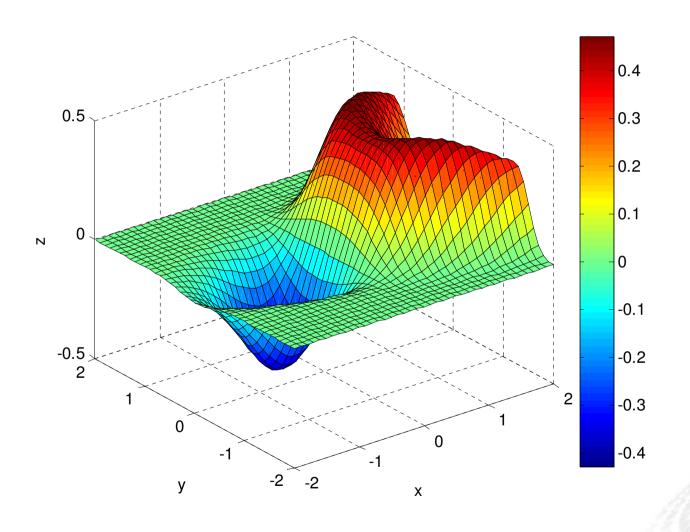
```
t = 0:pi/50:10*pi;
x = exp(-0.05*t).*sin(t);
y = exp(-0.05*t).*cos(t);
z = t;
plot3(x, y, z);
xlabel('x'),ylabel('y'),zlabel('z'),grid;
```

The curve  $x = e^{-0.05t}$  sin t,  $y = e^{-0.05t}$  cos t, z = t plotted with the plot3 function.



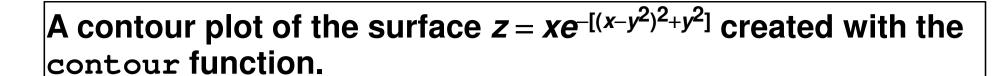

## Surface Plots: mesh and surf

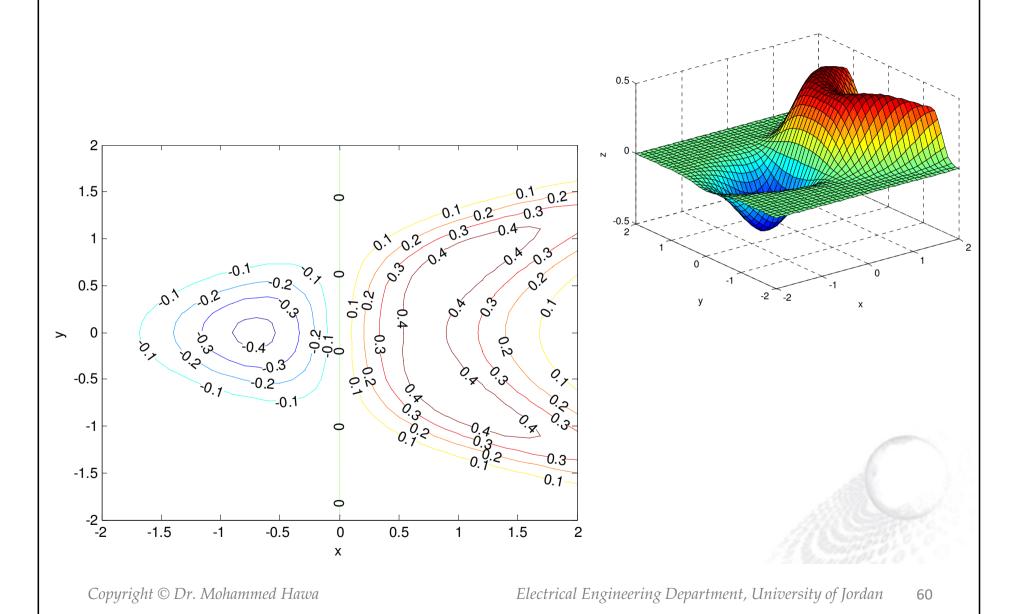
The following session shows how to generate the surface plot of the function  $z = xe^{-[(x-y^2)^2+y^2]}$ , for  $-2 \le x \le 2$  and  $-2 \le y \le 2$ , with a spacing of 0.1. This plot appears in the next slide.


```
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
mesh(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z');

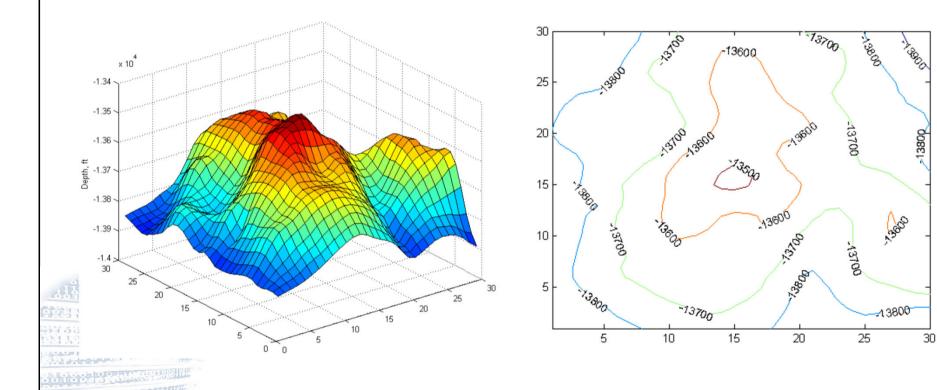
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
surf(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z'),colorbar
```

# A plot of the surface $z = xe^{-[(x-y^2)^2+y^2]}$ created with the mesh function.





# A plot of the surface $z = xe^{-[(x-y^2)^2+y^2]}$ created with the surf function.




The following session generates the contour plot of the function whose surface plot is shown above; namely,  $z = xe^{-[(x-y^2)^2+y^2]}$ , for  $-2 \le x \le 2$  and  $-2 \le y \le 2$ , with a spacing of 0.1. This plot appears in the next slide.

```
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
[cs, h] = contour(X,Y,Z);
xlabel('x'),ylabel('y'),zlabel('z');
clabel(cs, h, 'labelspacing', 72);
```

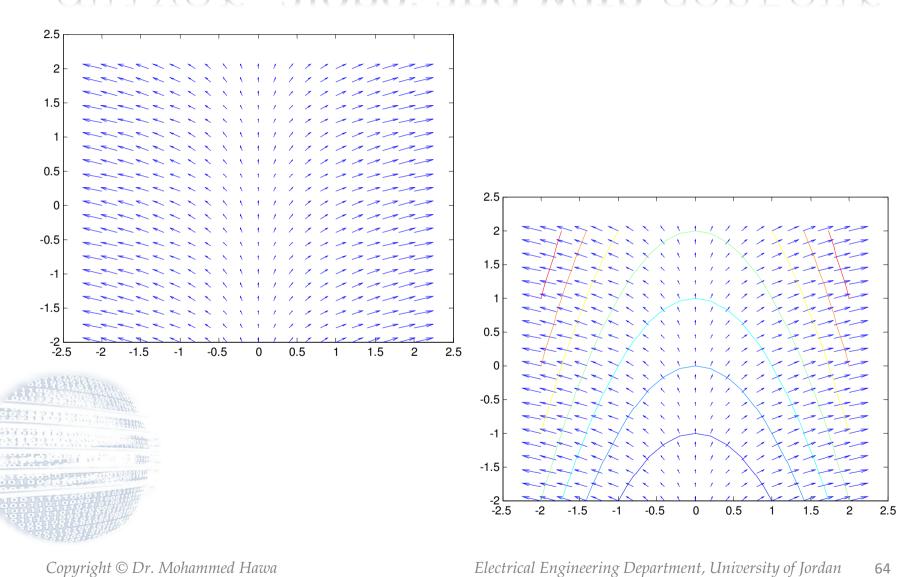




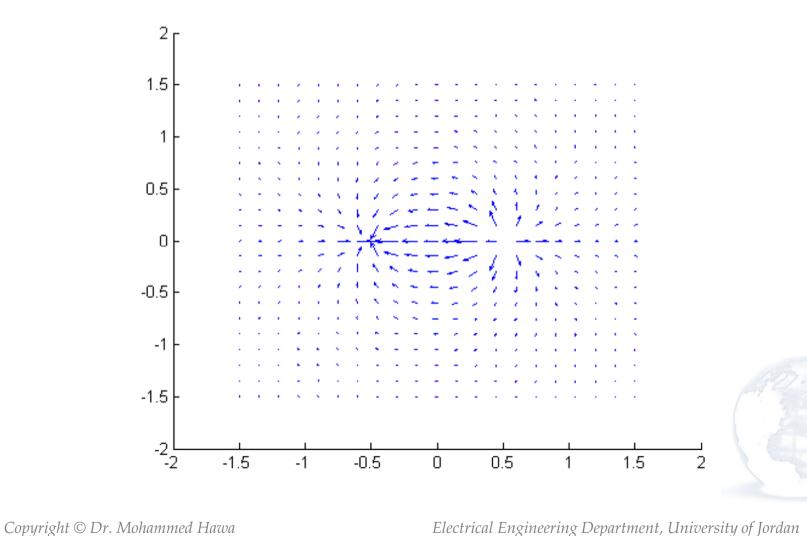
## Contours are useful for Terrain



# Vector fields: quiver


- quiver draws little arrows to indicate a gradient or other vector field.
- Although it produces a 2-D plot, it is often used in conjunction with contour. As an example, consider the scalar function of two variables:  $V = x^2 + y$ .
- The gradient of V is defined as the vector field:  $\nabla V = \left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial v}\right) = (2x, 1)$

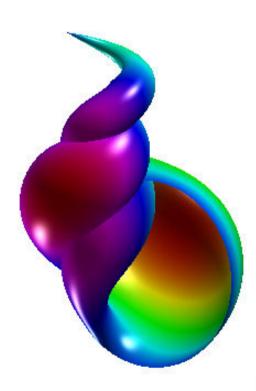
# quiver


• The following statements draw arrows indicating the direction of the vector  $\nabla V$  at points in the x-y plane (see next slide).

```
[x y] = meshgrid(-2:0.2:2, -2:0.2:2);
V = x.^2 + y;
dx = 2*x;
dy = ones(size(dx)); % dy same size as dx
quiver(x, y, dx, dy);
hold on;
contour(x, y, V);
hold off;
```

## quiver alone; and with contour




### Useful for Electromagnetic Fields



65

## Homework

```
% What is the output of this MATLAB code? Use help if you need.
figure;
t = linspace(0, 2*pi, 512);
[u,v] = meshgrid(t);
a = -0.2; b = .5; c = .1;
x = (a*(1-v/(2*pi)) .* (1+cos(u)) + c) .* cos(2*v);
y = (a*(1-v/(2*pi)) .* (1+cos(u)) + c) .* sin(2*v);
z = b*v/(2*pi) + a*(1-v/(2*pi)) .* sin(u);
surf(x,y,z,y);
shading interp;
axis off;
axis equal;
colormap(hsv(1024));
material shiny;
lighting gouraud;
lightangle (80, -40);
lightangle (-90, 60);
```



 $view([-150 \ 10]);$ 

### Animation and Movies!

- A movies is just successive plots seen in quick succession.
- We can plot data repeatedly on a single figure.
- For example the function  $y = \sin(x + t)$

```
x = 0:2*pi/100:2*pi;
for t = 0:0.05:5 % 5 seconds
  y = sin(x+t);
  plot(x,y,'k')
  pause(0.2); % 200 ms between frames
end
```



# Homework: Creating Movies

• To create a movie a sequence of frames are "grabbed" from the figure, stored in an array and written out as .avi file.

```
nFrame = 1; % frame counter
x = 0:2*pi/100:2*pi;
for t=0:0.05:5
    y=sin(x+t);
    plot(x,y);
    pause(0.2);
    movie(nFrame) = getframe; % grab frame & store it
    nFrame = nFrame + 1;
end
movie2avi(movie, 'animation.avi'); % save movie
```

# Homework

- Solve as many problems from Chapter 5 as you can
- Suggested problems:
- Solve: 5.3, 5.5, 5.9, 5.11, 5.15, 5.20, 5.27, 5.29, 5.35, 5.36, 5.39.

